Организация производства сухого льда (Ростехнадзор)
By in ,

Организация производства сухого льда (Ростехнадзор)

Технологический процесс производства гранул сухого льда

Сосуд с жидким СО2

Подачи жидкого СО2

Гранулятор

Грануляция сухого льда

Контейнеры с сухим льдом

О жидком диоксиде углерода и его хранении

   Согласно РД 26-4-87 двуокись углерода или углекислый газ (CO) может находиться в газообразном, сжиженном и твердом (в виде сухого льда) состояниях. Плотность двуокиси углерода зависит от давления, температуры и агрегатного состояния, в котором она находится. Тройная точка двуокиси углерода характеризуется избыточным давлением 0,428 МПа (4,28 кгс/см) и температурой минус 56,6°С. В жидком состоянии двуокись углерода может находиться только под давлением выше РД 26-4-87 Правила. Оборудование для безбаллонного обеспечения предприятий двуокисью углерода. Выбор и применение (с Изменением N 1)0,428 (4,28 кгс/см). Двуокись углерода не представляет опасность для здоровья человека при концентрации ее в воздухе рабочей зоны 0,5% по объему. При содержании в воздухе свыше 5% двуокиси углерода появляется ощущение раздражения слизистых оболочек дыхательных путей и глаз, кашель, ощущение тепла в груди и головные боли.

Технические требования к жидкой двуокиси углерода определяются ГОСТ 8050-85 «Двуокись углерода газообразная и жидкая. Технические условия». 

Для централизованного обеспечения двуокисью углерода потребителем могут быть применены: газопровод от поставщика к потребителю, автономная станция и изотермические резервуары среднего давления, предназначенные для хранения и транспортировки жидкой двуокиси углерода под рабочим давлением до 2,5 МПа.

Изотермические резервуары среднего давления, как транспортные цистерны, так и стационарные накопители, представляют собой теплоизолированные сосуды различной вместимости. При этом жидкая двуокись углерода накапливается и хранится у поставщика в стационарных накопителях при рабочем давлении от 0,8 до 1,6 МПа (8-16 кгс/см), из которых производится заполнение транспортных цистерн, рассчитанных на рабочее давление от 0,8 до 2,0 МПа (8-20 кгс/см) и предназначенных для доставки жидкой двуокиси углерода потребителю. У потребителя жидкая двуокись углерода переливается из транспортных цистерн в стационарные накопители (расходные емкости), рассчитанные на рабочее давление от 0,8 до 2,4 МПа (8-24 кгс/см).

Конструкция емкостей и интервалы рабочего давления в них обеспечивают срок хранения жидкой двуокиси углерода (без потерь его паров через предохранительные устройства в атмосферу) от 6 до 20 суток для стационарных накопителей и автомобильных транспортных цистерн и до 40 суток — для железнодорожных цистерн.

Стационарные резервуары типов УДХ, РДХ и НЖУ-50Д, оборудованные холодильными установками, обеспечивают хранение жидкой двуокиси углерода неограниченное время.

Сосуды изготавливают согласно ГОСТ 19662-89.

Согласно пп «к» пункта 3 правил сосуды для жидкого СО2 являются сосудами работающими под давлением.

Правила Ростехнадзора

Актуальность необходимо уточнять самостоятельно

Согласно подпункту 1 пункта 5 Приложения 2 ФЗ №116 «О промышленной безопасности опасных производственных объектов» Резервуары для хранения жидкой двуокиси углерода являются опасным производственным объектом (ОПО) с присвоенным классом опасности III, подлежат обязательной регистрации в государственном реестре в порядке, устанавливаемом правительством РФ.

Опасные производственные объекты, на которых эксплуатируются сосуды, работающие под давлением, должны быть зарегистрированы в Государственном реестре опасных производственных объектов в порядке, установленном Правилами регистрации объектов в государственном реестре опасных производственных объектов, утвержденными постановлением Правительства Российской Федерации от 24.11.98г. №1371.

Постановка на учет в Ростехнадзоре

Перечень документов необходимых для постановки на учет в Ростехнадзоре сосудов, работающих под избыточным давлением: 

   1. заявление, содержащее информацию об эксплуатирующей организации с указанием места установки сосуда, места применения транспортабельного сосуда и планируемого периода его эксплуатации на указанном месте;
   2. копии акта монтажа сосуда и пуско-наладочных работ;
   3. паспорт сосуда;
   4. краткие сведения о подлежащем учету оборудовании, указанные в паспорте, в том числе: 
      4.1. наименование или обозначение оборудования, год изготовления, завод-изготовитель, заводской номер (по системе нумерации изготовителя); 
      4.2. основные технические характеристики, расчетные и рабочие (максимальные, номинальные, минимальные) параметры и условия работы оборудования, сведения о рабочей среде, расчетный срок службы, расчетный ресурс (для котлов и их основных частей), расчетное количество пусков сосуда;
      4.3. сведения о дате проведения технического освидетельствования и следующего технического освидетельствования;
      4.4. сведения о проведенных экспертизах промышленной безопасности и сроках следующего проведения экспертизы.

Пуск в работу и ввод в эксплуатацию

Чтобы проверить готовность оборудования к пуску в работу, комиссия теперь контролирует (дополнен п. 207 ФНП):

  • фактическое состояние оборудования;
  • соответствие проектной документации (документации на установку) установленным требованиям;
  • наличие документации изготовителя, ее соответствие техническим регламентам и ФНП;
  • наличие документации о качестве монтажа;
  • наличие документов о приемке оборудования после пусконаладочных работ;
  • наличие документов о соответствии – сертификат/декларация или заключение ЭПБ;
  • наличие положительных результатов технического освидетельствования;
  • наличие документов по результатам пусконаладочных испытаний и комплексного опробования (если установлено проектом и руководством по эксплуатации);
  • наличие, соответствие проекту и исправность арматуры, контрольно-измерительных приборов, приборов безопасности и технологических защит;
  • правильность установки, размещения, обвязки оборудования – их соответствие требованиям промбезопасности, указаниям проекта и руководства по эксплуатации; исправность питательных устройств котла и их соответствие проекту;
  • соответствие водно-химического режима котла требованиям ФНП.

После проверки оборудования и организации надзора за ним составляют Акт готовности оборудования под давлением к вводу в эксплуатацию. Теперь есть образец этого документ – к ФНП добавили Приложение №7. Если один из членов комиссии не согласен с выводами проверок, он может изложить свое особое мнение в письменном виде (дополнен п. 209 ФНП). В таком документе надо обосновать свои возражения, указать требования, выполнение которых не обеспечено, со ссылкой на: пункты, части, главы нормативных актов, в том числе ФНП и/или технических регламентов; разделы (части) проектной/конструкторской документации и (или) технической документации изготовителя. Обратите внимание: особое мнение прилагается к Акту готовности оборудования (отметку о нем делают в самом акте) и становится его неотъемлемой частью.

Требования-рекомендации безопасности при производстве двуокиси углерода жидкой и твердой (сухого льда) по ПОТ РО 97300 07 95 (недействующий документ)

2.4.1. Обслуживание оборудования и установок в производстве двуокиси углерода жидкой может быть поручено лицам, достигшим 18-летнего возраста, прошедшим медицинское освидетельствование, производственное обучение, проверку знаний в квалификационной комиссии и инструктаж по безопасному ведению процессов, имеющим соответствующее удостоверение.

2.4.2. Помещения для производства двуокиси углерода жидкой и склады для хранения наполненных баллонов должны быть одноэтажными, без чердачных перекрытий, строительная часть должна быть выполнена в соответствии со СНиП 2.09.02-85 и СНиП 2.01.02-85, удовлетворять санитарным нормам и оборудована аварийной вентиляцией (Приложение 9 настоящих Правил).

2.4.3. Высота машинного (компрессорного) зала должна быть не менее 4 м, сухоледного — не менее 3,5 м и склада для баллонов, наполненных двуокисью углерода жидкой — не менее 3,25 м.

2.4.4. Склады твердой двуокиси углерода (сухого льда) желательно располагать вблизи с сухоледным отделением, высота склада должна быть не менее 3,25 м. Над складом сухого льда могут быть расположены служебные и другие помещения.

2.4.5. В стене, отделяющей помещение с наполнительными рампами от компрессорного отделения, устройство проемов не допускается.

2.4.6. В случае загазованности помещений компрессорного и наполнительного отделений углекислым газом должна срабатывать аварийная сигнализация и включаться аварийная вентиляция в соответствии с п. 2.2.37 настоящих Правил.

2.4.7. Монтаж и эксплуатация оборудования, работающего под давлением и не имеющего паспорта установленной формы, запрещается.

2.4.8. Величины предельно допустимых давлений и температуры газа на всех ступенях сжатия, давлений в стапельной батарее, в маслоотделителях всех ступеней, в фильтрах и других аппаратах, должны быть указаны в таблице, вывешенной на видном месте у каждого аппарата и сосуда.

2.4.9. Выброс двуокиси углерода при срабатывании предохранительных клапанов и других устройств должен осуществляться наружу с выводом выше конька крыши на 2 м.

2.4.10. Двуокись углерода по физико-химическим показателям должна соответствовать нормам и требованиям, приведенным в ГОСТ 8050. При отборе проб жидкой двуокиси углерода необходимо работать в защитных очках и рукавицах.

2.4.11. Запрещается наполнять баллоны без клейма освидетельствования, с просроченным сроком испытания, неокрашенные, с неисправным вентилем, при заметных механических повреждениях.

2.4.12. Взвешивание наполняемых баллонов производится только на проверенных весах, имеющих клеймо госповерителя.

2.4.13. Все баллоны, наполняемые двуокисью углерода жидкой, должны регистрироваться в журнале, где записывается следующее: дата наполнения, номер баллона, дата последующего освидетельствования, вместимость баллона в дм3, конечное давление газа при наполнении в кгс/см2, количество налитой в баллон двуокиси углерода в кг.

2.4.14. Мойка, погрузка и разгрузка баллонов должны быть механизированы. Места хранения баллонов не должны загромождаться, должны иметь свободный и достаточно широкий проезд от рампы к месту хранения баллонов. Границы проездов и площадок для хранения баллонов обозначаются хорошо видимыми белыми линиями шириной не менее 50 мм. Хранение баллонов в наполнительной станции не допускается. Баллоны должны храниться не ближе 1 м от нагревательных приборов и 10 м от источников тепла с открытым огнем.

2.4.15. Запрещается оставлять без надзора промежуточные сосуды с закрытыми вентилями на их жидкостных и газовых трубопроводах при наличии в них сжиженной двуокиси углерода.

2.4.16. Регистрация цистерн и других сосудов для хранения и перевозки сжиженного углекислого газа должна осуществляться в соответствии с Правилами устройства и безопасной эксплуатации сосудов, работающих под давлением. Эксплуатация цистерн и сосудов, не имеющих паспорта, запрещается.

2.4.17. Перед наполнением цистерн и сосудов необходимо проверить: наличие паспорта, дату освидетельствования, исправность арматуры, корпуса, теплоизоляции и состояние окраски. В цистерне, баллоне или сосуде не должно быть воды и постороннего газа, остаточное давление должно быть не менее 4 кгс/см2.

2.4.18. Наполнение цистерны или сосуда выше установленной инструкцией нормы запрещается. Степень наполнения цистерны или сосуда должна быть указана в килограммах и определяется взвешиванием во время наполнения.

2.4.19. В случае обнаружения пропуска газа из цистерны или сосуда наполнение их немедленно прекращается. Двуокись углерода должна быть удалена из цистерны или сосуда, и цистерна или сосуд должны быть направлены на устранение неисправностей.

2.4.20. У наполненной цистерны или сосуда на штуцере вентилей должны быть плотно навернуты или приболчены заглушки, а на арматуру надеты предохранительные колпаки, которые должны пломбироваться.

2.4.21. Завод-наполнитель (цех отпуска) обязан вести журнал налива цистерн и сосудов, в который записываются следующие данные: дата наполнения, название завода-изготовителя цистерны (сосуда), заводской и регистрационный номер, вместимость цистерны (сосуда), масса тары, масса продукта (налитой двуокиси углерода), величина рабочего и пробного давления, дата следующего освидетельствования.

2.4.22. Производство сухого льда и жидкой двуокиси углерода должно отвечать требованиям «Правил техники безопасности на заводах сухого льда и жидкой углекислоты».

2.4.23. В случае остановки сухоледного цеха (отделения) на продолжительное время оборудование и трубопроводы должны быть освобождены от сжиженной двуокиси углерода.

2.4.24. Блоки сухого льда должны храниться в специальных помещениях (хранилищах, складах) или в изотермических контейнерах. Хранить сухой лед в герметически закрытых сосудах запрещается.

2.4.25. Запрещается поднимать баллоны или контейнеры с ними, а также загружать и выгружать блоки сухого льда тельфером с просроченным сроком испытания или неисправным.

2.4.26. Машинный зал, сухоледное отделение и станция наполнения баллонов должны быть обеспечены шланговыми противогазами. У входа в каждое из перечисленных помещений должно быть не менее трех противогазов на случай аварии.

By in ,

Railway

RAILWAY TRANSPORT

Railway transport

Target Enterprises

Railway equipment repair plants
Underground

Target application

Railway car bodies
Passenger cars interior
Suspension and wheel pairs
External and internal cleaning of railway tanks

Description of application

Dry ice cleaning can be used for safely removing various contaminants (epoxy resin, sealing tapes and sealants, carbon, soot, etc.) before repainting, as part of repairs and maintenance service of equipment to prevent problems.

Traction couplings, chassis systems, engine compartment, power units, interior of passenger cars and other components can be quickly cleaned without partial or complete dismantling. Dry ice cleaning significantly reduces the complexity and risks associated with the use of hazardous combustible and abrasive materials.

As a result of jet cleaning with dry ice, underground repair organizations and locomotive repair plants can significantly reduce cleaning costs.

Using cryogenic blasting, you can perform:

— in the field of» Repair of railway trains » it is possible to implement fast cleaning of wheel pairs and all components under the car and above the car directly in the shop, without chemicals and water, with the effect of degreasing;

— in the field Of «preparation of tanks for filling» you can use fast cleaning of tanks from the outside of oil residues directly in the shop, without chemicals and water, with the effect of degreasing;

— in the field of «Sale and repair of wheel pairs» it is possible to implement fast cleaning of wheel pairs directly in the shop, without chemicals and water, with the effect of degreasing;

— in the area Of «sale of used railway car spare parts» you can use fast cleaning of spare parts (electric motors, diesel engines, suspension equipment, contact «horns», etc.) directly in the shop, without chemicals and water, with the effect of degreasing;

Equipment that can be cleaned by dry ice:

Dry ice cleaning advantages

Cleaning Effect

Mechanical impact of pellets

Pellets, accelerated in the air stream,  gaining speed up to 300m/s and hit the dirt removing it

Thermal shock

When in contact with the contamination, the granule transmits a temperature of -79°C, which makes the contamination brittle, easier to break down and peel off

Sharp expansion

Dry ice particles are heated when they hit the pollution, as the kinetic energy of the movement turns into heat, after which the particles instantly turn into CO2 gas, expanding in volume by 700 times. This expansion is similar to a gas wedge that exfoliates the contamination.

Properties of dry ice

DRY ICE DOESN'T MELT

Dry ice is solid carbon dioxide (CO2), which, when heated, passes immediately into the gaseous phase, bypassing
the liquid phase. This process is called sublimation.

LOW TEMPERATURE

Dry ice has an extremely low temperature of -78.5°C. Only the temperature of liquid nitrogen, which is -195.8°C, is lower.

ECOLOGICAL SAFETY

Liquid carbon dioxide used for making dry ice is a by-product of various industries, so no additional greenhouse gases are generated during its production.

Comparison with traditional cleaning methods

Chemical cleaning

Significant time is required for complete or partial disassembly and installation, transportation to the site cleaning, requires the involvement of loading equipment and additional personnel, which leads to increasing the time and complexity of cleaning activities

Chemicals and solvents are dangerous to humans

Chemistry can damage the seals, isolation and others materials

Chemical residues can cause corrosion of metal components of equipment

Use of solvents is flammable and explosive

It is necessary to dispose of chemical waste after cleaning (up to 1 l / sq.metre)

Water jet cleaning

Significant time is required for complete or partial disassembly and installation, transportation to the site cleaning, requires the involvement of loading equipment and additional personnel, which leads to increasing the time and complexity of cleaning activities

It takes time to purge and dry the equipment from the remaining water​

Risk of electric shock when working near electrical equipment​

The water jet can damage the seals and soft materials of the equipment

Water residues can cause corrosion of metal components of the equipment

It is necessary to clean and dispose of dirty water after cleaning (60-200 l / sq.metre)

Abrasive blasting

Significant time is required for complete or partial disassembly and installation, transportation to the site cleaning, requires the involvement of loading equipment and additional personnel, which leads to increasing the time and complexity of cleaning activities

It takes time to purge and dry the equipment from the remaining abrasive particles

Danger of abrasive settling in in the lungs

Abrasive damages the surface of the equipment

Risk of abrasive particles getting into hard-to-reach areas of the equipment, which may cause it to malfunction

It is necessary to clean and dispose of the abrasive after cleaning (30-100 kg / sq.metre)

Dry ice blasting

Dry ice disappears immediately after cleaning

Dry ice is not a fire hazard

Dry ice is not explosive

Dry ice does not conduct electricity​

Quick preparation before cleaning

It is possible to clean without stopping the process line

Minimum post-cleaning time after processing

Degreases and disinfects the surface

Contaminant types VS Air pressure

Light contaminants
Сompressed air is required
from 0 ATM
Average contaminants
Сompressed air is required
from 0 ATM
Hard contaminants
Сompressed air is required
from 0 ATM

Supersonic nozzles are required

Any questions?

Our experts are ready to help you
By in

ЖД-транспорт

ЖД-транспорт

ЖД-транспорт

Целевые Предприятия

Вагоремонтные заводы
Метрополитен

Целевые Применения

Корпуса вагонов
Интерьер пассажирских вагонов
Подвеска и колесные пары
Наружняя и внутренняя очистка ЖД-цистерн

Описание применения

Очистку сухим льдом можно использовать для безопасного удаления различных загрязнений (эпоксидная смола, уплотняющие ленты и герметики, нагар, сажа и др.) перед перекрашиванием или в рамках ремонта и ТО оборудования для предотвращения проблем.
Тяговые сцепки, системы шасси, моторный отсек, силовые агрегаты, интерьер пассажирских вагонов и другие компоненты можно быстро очистить без частичного или полного демонтажа. Очистка сухим льдом обеспечивает значительное уменьшение трудоемкости и рисков, связанных с использованием опасных горючих и абразивных материалов.
В результате струйной очистки сухим льдом ремонтные организации метрополитена и локомотиворемонтные заводы могут значительно снизить затраты на очистку.

С помощью криогенного бластинга можно проводить:
  • — в области «Ремонт подвижного состава» быструю очистку колесных пар и всех узлов под вагоном и над вагоном прямо в цеху, без химии и воды, с эффектом обезжиривания;
  • — в области «Подготовка цистерн под налив» быструю очистку цистерн снаружи от остатков нефтепродукции прямо в цеху, без химии и воды, с эффектом обезжиривания;
  • — в области «Продажа и ремонт колесных пар» быструю очистку колесных пар прямо в цеху, без химии и воды, с эффектом обезжиривания;
  • — в области «Продажа б/у запасных частей жд вагонов» быструю очистку запчастей (электродвигатели, дизельные двигатели, подвесное оборудование, контактные «рога» и т.д. прямо в цеху, без химии и воды, с эффектом обезжиривания;

Оборудование, которое можно чистить сухим льдом:

Есть вопросы?

Наши эксперты помогут вам
By in ,

City improvement

City improvement

City improvement

Target  application

Restoration of monuments
Graffiti removing
Restoration of brick surfaces
Cleaning the garbage disposal

Description of usage

The purpose of restoration work is to reconstruct monuments and historical buildings to their original state by removing surface contamination and old coatings. The use of chemicals or abrasive cleaning methods can change the integrity of the surface: chemicals can leach out the structural material, and abrasive cleaning methods can scratch the surface being cleaned. It is also important to use a method that does not contain secondary waste, because in a project such as the control of paint with a lead content of more than 2%, it is extremely important that the disposal method is as safe as possible. The cleaning operator can perform jet cleaning of marble, glass and onyx without the risk of damage to the surfaces. Dry ice cleaning does not leave any secondary waste and provides a multiple reduction in time for post-cleaning. Such cleaning can be used for historical restoration of churches and mosques, marble statues, houses after a fire, removing graffiti and restoring the appearance of brick walls. Also, such cleaning in terms of the rules of the the Ministry of ecology, is ideal for cleaning garbage chutes in residential buildings and removing graffiti in underground passages.

Equipment that can be cleaned by dry ice:

Cryoblasting advantages

Cleaning Effect

Mechanical impact of pellets

Pellets, accelerated in the air stream,  gaining speed up to 300m/s and hit the dirt removing it

Thermal shock

When in contact with the contamination, the granule transmits a temperature of -79°C, which makes the contamination brittle, easier to break down and peel off

Sharp expansion

Dry ice particles are heated when they hit the pollution, as the kinetic energy of the movement turns into heat, after which the particles instantly turn into CO2 gas, expanding in volume by 700 times. This expansion is similar to a gas wedge that exfoliates the contamination.

Properties of dry ice

DRY ICE DOESN'T MELT

Dry ice is solid carbon dioxide (CO2), which, when heated, passes immediately into the gaseous phase, bypassing
the liquid phase. This process is called sublimation.

LOW TEMPERATURE

Dry ice has an extremely low temperature of -78.5°C. Only the temperature of liquid nitrogen, which is -195.8°C, is lower.

ECOLOGICAL SAFETY

Liquid carbon dioxide used for making dry ice is a by-product of various industries, so no additional greenhouse gases are generated during its production.

Comparison with traditional cleaning methods

Chemical cleaning

Significant time is required for complete or partial disassembly and installation, transportation to the site cleaning, requires the involvement of loading equipment and additional personnel, which leads to increasing the time and complexity of cleaning activities

Chemicals and solvents are dangerous to humans

Chemistry can damage the seals, isolation and others materials

Chemical residues can cause corrosion of metal components of equipment

Use of solvents is flammable and explosive

It is necessary to dispose of chemical waste after cleaning (up to 1 l / sq.metre)

Water jet cleaning

Significant time is required for complete or partial disassembly and installation, transportation to the site cleaning, requires the involvement of loading equipment and additional personnel, which leads to increasing the time and complexity of cleaning activities

It takes time to purge and dry the equipment from the remaining water​

Risk of electric shock when working near electrical equipment​

The water jet can damage the seals and soft materials of the equipment

Water residues can cause corrosion of metal components of the equipment

It is necessary to clean and dispose of dirty water after cleaning (60-200 l / sq.metre)

Abrasive blasting

Significant time is required for complete or partial disassembly and installation, transportation to the site cleaning, requires the involvement of loading equipment and additional personnel, which leads to increasing the time and complexity of cleaning activities

It takes time to purge and dry the equipment from the remaining abrasive particles

Danger of abrasive settling in in the lungs

Abrasive damages the surface of the equipment

Risk of abrasive particles getting into hard-to-reach areas of the equipment, which may cause it to malfunction

It is necessary to clean and dispose of the abrasive after cleaning (30-100 kg / sq.metre)

Dry ice blasting

Dry ice disappears immediately after cleaning

Dry ice is not a fire hazard

Dry ice is not explosive

Dry ice does not conduct electricity​

Quick preparation before cleaning

It is possible to clean without stopping the process line

Minimum post-cleaning time after processing

Degreases and disinfects the surface

Contaminant types VS Air pressure

Light contaminants
Сompressed air is required
from 0 ATM
Average contaminants
Сompressed air is required
from 0 ATM
Complicated contaminants
Сompressed air is required
from 0 ATM

Supersonic nozzles are required

Any questions?

Our experts are ready to help you
By in

Благоустройство города

Благоустройство города

Благоустройство города

Целевые Применения

Реставрация памятников
Очистка граффити
Восстановление кирпичных поверхностей
Очистка мусоропроводов

Описание применения

Целью реставрационных работ является возвращение памятников и исторических зданий в исходное состояние путем снятия поверхностных загрязнений и старых покрытий. Использование химических веществ или абразивных методов очистки могут изменить целостность поверхности: химикаты могут выщелачивать конструкционный материал, а абразивные методы очистки могут царапать очищаемую поверхность. Важно также использовать метод, не содержащий вторичных отходов, поскольку в рамках такого проекта, как борьба с использованием краски с содержанием свинца более 2 %, крайне важно, чтобы метод удаления был максимально безопасен. Оператор очистки может проводить струйную очистку мрамора, стекла и оникса без риска повреждения поверхностей. Очистка сухим льдом не оставляет вторичных отходов и обеспечивает многократное сокращение времени на пост-уборку. Такая очистка может быть использована для исторической реставрации церквей и мечетей, мраморных статуй, домов после пожара, удаления граффити и восстановления вида кирпичных стен. Также такая очистка с точки зрения правил СанПина и Минэкологии идеально подходит для очистки мусоропроводов в жилых домах и удаления граффити в подземных переходах.

Оборудование, которое можно чистить сухим льдом:

Есть вопросы?

Наши эксперты помогут вам
By in

Military

Military

Military industrial complex

Target  industries

Aircraft repair companies
Tank repair companies​
Ship repair yards

Description of usage

Dry ice cleaning can be used for safely removing various contaminants (epoxy resin, sealing tapes and sealants, carbon, soot, etc.) before repainting or as part of repairs, maintenance service of equipment to prevent problems.

Traction couplings, chassis systems, engine compartment, power units, interior of passenger cars and other components can be quickly cleaned without partial or complete dismantling. Dry ice cleaning significantly reduces the complexity and risks associated with the use of hazardous combustible and abrasive materials.

As a result of jet cleaning with dry ice, defense industry repair companies can significantly reduce the cost of cleaning space, aviation, tank and marine equipment.

Equipment that can be cleaned by dry ice:

Cryoblasting advantages

Cleaning Effect

Mechanical impact of pellets

Pellets, accelerated in the air stream,  gaining speed up to 300m/s and hit the dirt removing it

Thermal shock

When in contact with the contamination, the granule transmits a temperature of -79°C, which makes the contamination brittle, easier to break down and peel off

Sharp expansion

Dry ice particles are heated when they hit the pollution, as the kinetic energy of the movement turns into heat, after which the particles instantly turn into CO2 gas, expanding in volume by 700 times. This expansion is similar to a gas wedge that exfoliates the contamination.

Properties of dry ice

DRY ICE DOESN'T MELT

Dry ice is solid carbon dioxide (CO2), which, when heated, passes immediately into the gaseous phase, bypassing
the liquid phase. This process is called sublimation.

LOW TEMPERATURE

Dry ice has an extremely low temperature of -78.5°C. Only the temperature of liquid nitrogen, which is -195.8°C, is lower.

ECOLOGICAL SAFETY

Liquid carbon dioxide used for making dry ice is a by-product of various industries, so no additional greenhouse gases are generated during its production.

Comparison with traditional cleaning methods

Chemical cleaning

Significant time is required for complete or partial disassembly and installation, transportation to the site cleaning, requires the involvement of loading equipment and additional personnel, which leads to increasing the time and complexity of cleaning activities

Chemicals and solvents are dangerous to humans

Chemistry can damage the seals, isolation and others materials

Chemical residues can cause corrosion of metal components of equipment

Use of solvents is flammable and explosive

It is necessary to dispose of chemical waste after cleaning (up to 1 l / sq.metre)

Water jet cleaning

Significant time is required for complete or partial disassembly and installation, transportation to the site cleaning, requires the involvement of loading equipment and additional personnel, which leads to increasing the time and complexity of cleaning activities

It takes time to purge and dry the equipment from the remaining water​

Risk of electric shock when working near electrical equipment​

The water jet can damage the seals and soft materials of the equipment

Water residues can cause corrosion of metal components of the equipment

It is necessary to clean and dispose of dirty water after cleaning (60-200 l / sq.metre)

Abrasive blasting

Significant time is required for complete or partial disassembly and installation, transportation to the site cleaning, requires the involvement of loading equipment and additional personnel, which leads to increasing the time and complexity of cleaning activities

It takes time to purge and dry the equipment from the remaining abrasive particles

Danger of abrasive settling in in the lungs

Abrasive damages the surface of the equipment

Risk of abrasive particles getting into hard-to-reach areas of the equipment, which may cause it to malfunction

It is necessary to clean and dispose of the abrasive after cleaning (30-100 kg / sq.metre)

Dry ice blasting

Dry ice disappears immediately after cleaning

Dry ice is not a fire hazard

Dry ice is not explosive

Dry ice does not conduct electricity​

Quick preparation before cleaning

It is possible to clean without stopping the process line

Minimum post-cleaning time after processing

Degreases and disinfects the surface

Contaminant types VS Air pressure

Light contaminants
Сompressed air is required
from 0 ATM
Average contaminants
Сompressed air is required
from 0 ATM
Hard contaminants
Сompressed air is required
from 0 ATM

Supersonic nozzles are required

Any questions?

Our experts are ready to help you